Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Metab ; 39(5): 757-768, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33839951

RESUMO

INTRODUCTION: Alveolar bone, dentin, and cementum provide a striking example of structurally different collagen-based mineralized tissues separated only by periodontal ligament. While alveolar bone is strongly remodeled, this does not hold for dentin and cementum. However, additional dentin can be deposited on the inner surface of the pulp chamber also in older age. By investigating alveolar bone and molar of mice, the aim of our study is to detect changes in the mineral nanostructure with aging. MATERIALS AND METHODS: Buccal-lingual sections of the mandible and first molar from C57BL/6 mice of three different age groups (young 5 weeks, adult 22 weeks and old 23 months) were characterized using synchrotron small and wide-angle X-ray scattering. Local average thickness and length of the apatite particles were mapped with several line scans covering the alveolar bone and the tooth. RESULTS: In alveolar bone, a spatial gradient was seen to develop with age with the thickest and longest particles in the distal part of the bone. The mineral particles in dentin were found to be become thicker, but then decrease of average length from adult to old animals. The mineral particle characteristics of dentin close to the pulp chamber were not only different to the rest of the tooth, but also when comparing the different age groups and even between individual animals in the same age group. CONCLUSIONS: These results indicated that mineral particle characteristics were found to evolve differently between molar and alveolar bone as a function of age.


Assuntos
Mandíbula , Nanoestruturas , Envelhecimento , Animais , Dentina , Mandíbula/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL
2.
J Struct Biol ; 196(2): 223-231, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27637572

RESUMO

Alveolar bone - the bony ridge containing the tooth sockets - stands out by its remodeling activity where bone is being formed and resorbed at a much higher rate than in any other bony tissue. Teeth that are anchored in the jaw through the periodontal ligament exert very large localized loads during mastication that could lead to a unique adaptation of the collagen/mineral structure in the bone. Our aim was to characterize the nanostructure of alveolar bone and to determine the influence of diabetes on structural characteristics of the mineralized matrix. Using small- and wide-angle X-ray scattering (SAXS/WAXS), we studied a spontaneous diabetic mouse model (KK+) and its corresponding healthy controls (KK-) (n=6) to determine the size and mutual alignment of the mineral nanoparticles embedded in the collagen matrix. On cross-sections (buccal-lingual) of the first molar multiple line scans with a spatial resolution of 30µm were performed on each sample, from the lingual to the buccal side of the mandible. Mineral particle thickness and length are decreasing towards the tooth in both buccal and lingual sides of alveolar bone. While mineral particles are well aligned with the long axis of the tooth on the buccal side, they are in a quarter of the measurements oriented along two preferred directions on the lingual side. These nanostructural differences can be interpreted as the result of an asymmetric loading during mastication, leading to a tilting of the tooth in its socket. In diabetic mice particle thicknesses are smaller compared to control animals.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Mandíbula/química , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Animais , Remodelação Óssea , Diabetes Mellitus Tipo 2/complicações , Camundongos , Minerais/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Alvéolo Dental/química
3.
Dalton Trans ; 43(3): 950-7, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24158643

RESUMO

Reaction of Ti(OiPr)4 with several tri- and tetracarboxylic acids, followed by hydrolysis, resulted in microporous, structured materials, with microporous surface areas up to 340 m(2) g(-1). Depending on the kind of carboxylic acid, the Ti : COOH ratio and the Ti : H2O ratio, either pillared layered or surface fractal 3D structures were obtained according to SAXS measurements. The most pronounced layered structure was found for 1,2,4,5-benzenetetrabenzoic acid and a Ti : H2O ratio of 4, while a Ti : H2O ratio of 2 resulted in a 3D structure. The use of 1,3,5-benzenetricarboxylic acid or 1,3,5-benzenetribenzoic acid resulted in similar structures which, however, were less pronounced and less ordered. The reaction of tetrakis(4-carboxyphenyl)silicon with Ti(OiPr)4 or benzenetribenzoic acid with Zr(OiPr)4 gave 3D structures for all Ti : H2O ratios.

4.
Methods Enzymol ; 532: 391-413, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188777

RESUMO

X-ray scattering is a powerful nondestructive experimental method that is well suited to study biomineralized tissues such as bone. Small-angle X-ray scattering (SAXS) gives information about the size, shape, and predominant orientation of the nanometer-sized mineral particles in the bone. Wide-angle X-ray diffraction (WAXD) allows the characterization of structural parameters, describing size and orientation of the hydroxyapatite crystals. Furthermore, scanning an area with nano- or micrometer-sized X-ray beams allows one to extend this local information to map large bone or dentin sections. Therefore, this method contributes to obtaining information on several length scales simultaneously. Combining results from scanning SAXS and WAXD with those from other position-sensitive methods such as backscattered electron imaging or X-ray fluorescence spectroscopy of the same bone sections allows the exploration of complex biological processes. The method is described and illustrated by a few examples, including the mapping of a complete tooth and the effect of osteoporosis treatment on the bone mineral.


Assuntos
Osso e Ossos/ultraestrutura , Dentina/ultraestrutura , Algoritmos , Animais , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Chem Phys Lett ; 521(C): 91-97, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22347721

RESUMO

The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed.

6.
Langmuir ; 28(1): 741-50, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22085020

RESUMO

The ordering of dodecyl chains has been investigated in mixed monolayers of phosphonic acid capping agents on the surface of hydrothermally prepared zirconia nanocrystals. Methyl-, phenyl-, pyryl-, and tert-butylphosphonic acids have been used to investigate series with different mixing ratios with dodecylphosphonic acid as the cocapping agent for the mixed monolayer formation. Fourier transform infrared (FTIR) studies revealed that an increasing amount (different for each type) of coadsorbed capping agent reduces the ordering of the dodecyl chains significantly. Small-angle X-ray scattering (SAXS) verified that with increasing amount of cocapping agent the agglomeration of the particles decreases. The strong correlation of the agglomeration behavior with the ordering of the surface-bound alkyl chains leads to the conclusion that interparticle bilayers, formed via long alkyl chain packing, are responsible and can be controlled on a molecular level by coadsorbing various molecules. On the basis of this correlation, nanoparticles can be used as probes for self-assembled monolayer investigation by an indirect structural method (SAXS) and correlated with the routine spectroscopical method for the chemical analysis of surface groups (FTIR).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...